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ABSTRACT

This study examines the impact of a changing climate on heat-related mortality in 40 large cities in the

United States. A synoptic climatological procedure, the spatial synoptic classification, is used to evaluate

present climate–mortality relationships and project how potential climate changes might affect these values.

Specifically, the synoptic classification is combined with downscaled future climate projections for the decadal

periods of 2020–29, 2045–55, and 2090–99 from a coupled atmospheric–oceanic general circulation model.

The results show an increase in excessive heat event (EHE) days and increased heat-attributable mortality

across the study cities with the most pronounced increases projected to occur in the Southeast and Northeast.

This increase becomes more dramatic toward the end of the twenty-first century as the anticipated impact of

climate change intensifies. The health impact associated with different emissions scenarios is also examined.

These results suggest that a ‘‘business as usual’’ approach to greenhouse gas emissions mitigation could result

in twice as many heat-related deaths by the end of the century than a lower emissions scenario. Finally,

a comparison of future estimates of heat-related mortality during EHEs is presented using algorithms de-

veloped during two different, although overlapping, time periods, one that includes some recent large-scale

significant EHE intervention strategies (1975–2004), and one without (1975–95). The results suggest these

public health responses can significantly decrease heat-related mortality.

1. Introduction

Excessive heat events (EHEs) are the leading cause of

weather-related deaths in the United States [(National

Weather Service) NWS 2009]. However, the impacts of

specific EHEs may be more widely recognized. For ex-

ample, the loss of over 700 lives in Chicago to a 1995 EHE

has been well documented (Klinenberg 2002; Semenza

et al. 1996. Whitman et al. 1997) and is viewed as a critical

moment in terms of increasing awareness of the potential

health risks and impacts of EHEs in the United States.

This awareness has been reinforced by the European

EHE in August 2003 that was responsible for an esti-

mated 40 000 deaths across central and western Europe

(Valleron and Boumendil 2004). While it has been sug-

gested that heat-related mortality in the United States
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has been declining in the last few decades (Davis et al.

2002, 2003a,b; Sheridan et al. 2009; Kalkstein et al. 2010),

EHEs have still contributed to a significant and largely

avoidable loss of life. In addition, some research (e.g.,

Sheridan et al. 2009) indicates this declining mortality

trends may have stopped and may now be increasing

again. At the same time, climate models generally project

increasing average temperatures in the coming decades

(Solomon et al. 2007). More focused studies that evaluate

climate change impacts on future EHE trends have sim-

ilarly concluded many regions of the United States can

anticipate more frequent and severe EHEs (e.g., Meehl

and Tebaldi 2004; O’Neill and Ebi 2009).

This study quantifies the potential impacts of climate on

EHE-attributable mortality in 40 large U.S. cities under

a ‘‘business as usual’’ greenhouse gas (GHG) emissions

scenario and a scenario with GHG emissions controls.

These results provide an update to earlier projections of

the potential health impacts of climate change based on

EHE impacts (e.g., Kalkstein and Greene 1997). Finally,

a method is developed and applied to quantify the health

benefit that recent improvements in EHE notification

and response programs may provide in considering

the future health impact of EHEs.

2. Data and methods

a. Mortality data

Developing the climate and EHE-attributable mor-

tality relationships and estimates for the 40 U.S. cities

under consideration began by extracting daily mortality

record information including the date, cause, and county

in which the deceased had passed away. Deaths from all

causes are used as the mortality measure in this study as

this has been shown to be a more robust measure for

examining heat–mortality relationships than mortality

totals for specific causes of death (Ebi et al. 2004). For

the baseline portion of this study, these data were devel-

oped from 1 June to 31 August during 1975–95 [(Na-

tional Center for Health Statistics) NCHS 2007]. Any

population trends for the cities in these records have

been removed using a standardization procedure used

previously (Kalkstein et al. 2010). An analysis of intra-

seasonal trends was also undertaken to identify any

significant changes in the daily mortality throughout the

summer season. However, unlike in some European cities,

for example Rome and Paris, where there is a pronounced

decrease in acute daily mortality in early August as sig-

nificant numbers of residents leave the city for summer

vacations, no intraseasonal trends were found in the data

for the U.S. cities, so no adjustment was necessary.

It should be noted that in estimating future EHE-

attributable mortality we hold the exposed population

constant. In other words, no adjustments are made for

potential changes in the size or composition (e.g., age

distribution) of a city’s population. The nature of any bias

this introduces is uncertain, as changes in the relative

proportion of vulnerable individuals in a city would need

to be accounted for along with changes in the response

of these individuals to future EHE days to produce

completely accurate forecasts. The data required for both

of these adjustments is lacking over the time period of

interest. However, since we can assume that the pro-

portion of heat-vulnerable elderly individuals will likely

rise, any estimates in this study may be considered con-

servative. Holding the population constant over time also

helps highlight the impact of climate change over time by

limiting the number of factors that contribute to EHE-

attributable mortality estimates that are changing.

b. Climatological data and methods

A large body of literature suggests that, rather than

responding in isolation to individual weather elements

(e.g., maximum temperature), human health is affected

by the simultaneous interactions from a much larger suite

of meteorological conditions (e.g., temperature, humid-

ity, cloud cover, and wind speed). Much recent work on

heat/health issues has relied on the utilization of a

‘‘synoptic climatological methodology,’’ which identifies

weather situations that increase the incidence of adverse

health outcomes (e.g., Kalkstein et al. 2008a; Sheridan

and Kalkstein 2004; Kysely and Huth 2004). To account

for this more holistic relationship between EHEs and

daily mortality, the spatial synoptic classification (SSC;

Sheridan 2002) method was used to categorize the rep-

resentative weather conditions for each day in each city.

The SSC examines a range of meteorological variables,

and classifies each day at a particular location into one

of several recognizable, homogeneous, weather types.

Thus, in each city, each day is classified into one

of six main airmass categories, or is considered a

transition between the categories. The characteristics of

the conditions in these airmass categories are as follows:

d Dry moderate (DM): A warm, comfortable air mass

that occurs in the northeastern United States in

summer.
d Dry polar (DP): The coolest and dry air mass, although

still warm in the summertime. Usually occurs immedi-

ately after the passage of a cold front.
d Dry tropical (DT): The hottest air mass. For summer,

temperatures usually exceed 958F and sometimes

exceed 1008F, or more in the hotter parts of the

country. This air mass is also typically associated with

low cloud cover humidity, which can lead to rapid

dehydration.
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d Moist moderate (MM): A cloudy, mild air mass that

may sometimes be associated with fog and light

rain.
d Moist polar (MP): While more typically a winter or

shoulder season, rather than a summer, air mass, this

situation is often associated with storms moving up

the East Coast.
d Moist tropical (MT): Very warm and humid air mass,

sometimes associated with summer thunderstorms.

This air mass is associated with the highest apparent

temperature values, and is often quite muggy and un-

comfortable. Since MT is often quite prevalent in the

summer, this hot and humid air mass is often subdi-

vided to more closely establish the heat–mortality re-

lationship.
d Moist tropical plus (MT1): These are particu-

larly hot and humid subsets of the MT air mass.

Dewpoint temperatures are very high, tempera-

tures are in the 908s, and overnight temperatures

are the warmest of any air masses.
d Transition (T): Associated with a rapid change be-

tween synoptic conditions. This can be associated with

a frontal passage, when temperature, dewpoint, and

other meteorological factors are rapidly changing.

Within this group, offensive air masses are those with

a mean daily standardized mortality difference that

are statistically significantly greater than 0 [refer to

Sheridan and Kalkstein (2004) and Kalkstein et al.

(2008b) for standardization procedures]. Based on prior

analyses of the acute daily mortality–airmass relation-

ship, it is clear that the DT and/or MT1 air mass are

offensive airmass categories (Kalkstein et al. 2008a).

Additional examples of the impacts of these categories

come from notable past EHEs. For example many of the

days in the 1995 Chicago Heat Wave were MT1

(Kalkstein and Greene 1997), while many days in France

and Italy during the unprecedented European were DT

(Kalkstein et al. 2008a). As a result, for this study, days

in either the DT or MT1 categories with a mean daily

standardized mortality difference greater than 0 are

categorized as EHE days.

Once each day during the summer period is assigned

to an airmass category, a mortality algorithm is de-

veloped that relates the variation in standardized mor-

tality on all EHE days within a city to meteorological

and environmental variables. The meteorological vari-

ables considered during the algorithm development

include the following: maximum and minimum air tem-

perature and maximum and minimum dewpoint tem-

perature. The nonmeteorological variables considered

are as follows: consecutive days of offensive airmass

conditions, and time of season when the offensive air

mass occurs. These algorithms are developed using a

stepwise multiple regression procedure, and care is

taken to make certain that colinearity among inde-

pendent variables is minimized.1 For example, the fol-

lowing EHE-attributable mortality algorithm was

developed using the historical weather and mortality

data for St. Louis, Missouri:

MORT 5 0:32tmax 2 0:03TOS 2 7:76,

where MORT 5 excess mortality (defined here as

mortality above the long-term adjusted baseline), Tmax

is the maximum temperature (8C), and TOS is the time

of season variable, where 1 June 5 1, . . . , 31 August 5 92).

This example fits a common pattern shown in previous

research (e.g., Greene and Kalkstein 1996; Kalkstein

et al. 2010, and others), where maximum temperature is

often the most important variable, and the nonmeteo-

rological variables also show some importance. While

the other variables have a positive relationship, the TOS

variable is negative, which shows a statistically significant

decrease in sensitivity as the population acclimatizes over

the course of the summer.

Table 1 lists the U.S. cities in this study, their 2000

census populations, the average number of EHE days

they experienced each summer in the period 1975–95, and

the corresponding average number of EHE-attributable

deaths per summer during this period. The results in

Table 1 are sorted in descending order based on the

calculated average summertime EHE-attributable mor-

tality rates per 100 000 city residents. These results

show considerable variability by location. Cumula-

tively, the results indicate an EHE mortality impact of

1540 lives being lost to an average summer from among

the roughly 37.5 million city residents covered in this

study.

c. Climate model data and methods

For this study, the Parallel Climate Model (PCM) was

used to complete climate simulations with the results

then being downscaled to the appropriate location for

each city. The PCM is a global coupled atmosphere–ocean

general circulation model (AOGCM) developed at the

National Center for Atmospheric Research (NCAR)

that provides state-of-the-art simulations of the earth’s

past, present, and future climate states. Included in the

PCM is a series of submodels of the atmosphere, ocean,

sea ice, and land. The atmospheric component is the

parallel version of the NCAR Community Climate

1 All models and algorithms shown in this paper are significant at

the alpha 5 0.05 level.
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Model, version 3.2 (CCM3). This model includes the

latest versions of radiation, boundary physics, and pre-

cipitation physics. It also contains submodels that con-

sider soil physics and vegetation (Kiehl 2007; Kiehl et al.

1998; Collins et al. 2006; Dai et al. 2001). The historical

estimates have been computed using the twentieth-century

scenario (20C3M), which includes current estimates of

twentieth-century total (anthropogenic 1 natural) forc-

ing (Hayhoe et al. 2010). This incorporates observed

historical emissions of carbon dioxide, methane, and

other greenhouse gases. The projections for the future

using the AOGCM are based on the Intergovernmental

Panel on Climate Change (IPCC) Special Report on

Emission Scenarios (SRES) higher (A1FI) and lower

(B1) emissions scenarios (Nakićenović and Swart 2000).

These scenarios set the future atmospheric carbon di-

oxide (CO2) equivalent concentrations based upon

estimates of a range of variables that could impact

greenhouse gas emissions. These include estimates of

future changes in population, demographics, and tech-

nology, among others.

The B1 scenario values are considered a proxy for

stabilizing atmospheric CO2 concentrations at or above

550 ppm by 2100, the atmospheric CO2 equivalent

TABLE 1. Average number of summertime EHE days and EHE attributable-deaths/rates based on data from 1975 to 1995.

City

Population in 2000

(100 000s)

Avg No. of

summertime EHE

days (1975–95)

Forecast No. avg

summertime EHE-attributable

deaths from algorithm

(1975–95 data)

Avg summertime

EHE-attributable mortality

rate per 100 000 residents

(using algorithm 1975–95)

Hartford, CT 1.22 6 32 26.7

Newark, NJ 2.74 8 66 24.0

Providence, RI 1.74 7 40 22.9

Boston, MA 5.89 11 104 17.7

Greensboro, NC 2.24 8 36 16.3

Louisville, KY 2.56 8 39 15.3

Kansas City, MO 4.42 7 48 10.9

Birmingham, AL 2.43 5 24 10.0

Baltimore, MD 6.51 8 64 9.9

Cleveland, OH 4.78 5 45 9.4

Atlanta, GA 4.16 5 37 8.8

Denver, CO 5.55 9 46 8.3

Memphis, TN 6.50 9 54 8.3

Tampa, FL 3.03 3 25 8.2

St. Louis, MO 3.48 11 27 7.8

Buffalo, NY 2.93 3 23 7.7

Pittsburgh, PA 3.35 5 25 7.5

Detroit, MI 9.51 9 67 7.0

Minneapolis, MN 3.83 8 20 5.1

New Orleans, LA 4.85 5 24 5.0

Washington, DC 5.72 16 28 5.0

Philadelphia, PA 15.18 6 69 4.6

Dallas, TX 11.89 11 54 4.5

Jacksonville, FL 7.36 7 29 4.0

Chicago, IL 28.96 5 104 3.6

Cincinnati, OH 3.31 4 12 3.5

Indianapolis, IN 7.82 5 25 3.2

New York, NY 80.08 11 235 2.9

Portland, OR 5.29 4 14 2.6

Phoenix, AZ 13.21 7 33 2.5

Seattle, WA 5.63 2 13 2.3

San Antonio, TX 11.45 5 20 1.7

San Jose, CA 8.95 0 11 1.3

Salt Lake City, UT 1.82 0 2 0.9

Los Angeles, CA 36.95 1 25 0.7

Columbus, OH 7.11 5 4 0.6

San Diego, CA 12.23 1 6 0.5

San Francisco, CA 7.77 2 3 0.4

Houston, TX 19.54 1 6 0.3

Miami, FL 3.62 0 0 0.0

Tot 375.59 1540
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concentration for the higher A1FI scenario is approxi-

mately 1000 ppm (Nakićenović and Swart 2000). The

estimates in this study do not explicitly model GHG

emission control policies, but are considered an ap-

proximate surrogates for an intensive greenhouse gas

emission control policy (B1), or a business-as-usual op-

tion (A1F1). The AOGCM simulations were then de-

veloped using these carbon equivalent values.

To account of any potential biases in the AOGCM

scenario estimates, the values produced for the 1990s

were compared to the actual data from that time period.

Future estimates for the decades in the 2000s were

standardized by the identified bias (e.g., difference be-

tween the estimated and observed values for the 1990s),

so that any systematic errors in the model output would

be minimized. Finally, once the 6-h instantaneous values

for each of the necessary weather variables are avail-

able, a daily synoptic calendar for the future decades was

developed.

The initial results from the PCM were then down-

scaled using a statistical asynchronous regression tech-

nique (Dettinger et al. 2004; Cayan et al. 2008; Hayhoe

et al. 2004; Vrac et al. 2007) to provide greater spatial

resolution and to generate city-specific results for each

of the simulated decades. The daily values from the

PCM were interpolated to provide 6-h instantaneous

values intervals (i.e., 0400, 1000, 1600, and 2200 UTC)

for each day for the historic and future decades listed

above. Values for the standard meteorological variables

the SSC method requires to make daily airmass cate-

gorizations (e.g., temperature, dewpoint, wind speed

and direction, sea level pressure, and cloudiness) were

obtained from the downscaled data and used to develop

daily airmass calendars for each decade and emission

scenario simulated. The EHE-attributable mortality

impact was then calculated for the future decades for

each city using the mortality algorithms developed using

the baseline data (i.e., 1975–95) while holding city pop-

ulations constant as previously discussed. To more

readily compare the EHE-related mortality impact

among cities we also calculated the equivalent EHE-

attributable mortality rate per 100 000 city residents for

an average summer in each future period. Note that we

have assumed that the relationships between the mete-

orological parameters and acute mortality during EHE

will remain constant in the future. There has been some

suggestion (Palecki et al. 2001; Fouillet et al. 2008) that

there may be some acclimatization in cities. However,

since there is no way of quanitifying the specific direc-

tion and amount of such change, we have not included it

in our analysis. We do note, however, that such potential

acclimatization may increase the error bars associated

with our estimates.

3. Results

Table 2 presents the average number of summertime

EHE days in the cities in the different study periods and

under the alternative climate change scenarios.

Recall that an EHE day is not merely a representation

of ‘‘hot’’ weather, but represents those days where a

particular location experiences airmass conditions that

have been shown to increase daily mortality. Therefore,

cities currently lacking evidence of a strong heat–mortality

relationship, such as many Southeastern cities or cities

that have minimal summertime weather variability (e.g.,

Phoenix, Arizona; Miami, Florida; Houston, Texas)

do not have a relatively high number of EHE days under

the current climate conditions, often despite having

relatively hot summers. This linking of EHE days to

mortality increases also explains why several cities

with moderate summer climates (e.g., San Francisco,

California; Seattle, Washington; Buffalo, New York)

also appear in Table 2 with relatively few EHE days

under current conditions.

Considering the impact of climate change with the A1

emission scenario results in Table 2 there is a fairly

consistent increase in the number of EHE days across

locations as time progresses. This result is consistent with

previous studies (e.g., Solomon et al. 2007; Kalkstein and

Greene 1997), which found that as the models estimate an

increase in temperature, the number of EHE days in-

creases as more days move into the offensive airmass

categories based on existing characterization criteria. By

the end of the twenty-first century, every city will expe-

rience an increase in the average number of summertime

EHE days as compared to their values during 1975–95. In

over half the cities (i.e., 23), this increase results in more

than half of the average summertime days in the 2090s

under the A1 scenario satisfying current EHE day criteria

while in more than 25% of the cities (i.e., 11) more than

2/3 of future summertime days in this scenario satisfy

current EHE criteria.

However, Table 2 also shows that these increases in

EHE days do not always occur consistently over time in

all locations. A careful examination of Table 2 shows the

cities fall into three broad categories. The large majority

of the cities fall into the first category, those that show

a consistent increase in EHE days over time. These fit

the expected pattern with a steady and significant in-

crease in overall average temperature over time.

The second, smaller, group consists of those cities that

show a reduction in the number of EHE days from pre-

sent conditions to the early part of the twenty-first

century (i.e., the 2020s) before experiencing a steady

increase. Cities such as New Orleans, Louisiana, and

Louisville, Kentucky, fall into this category. The
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explanation for the pattern in these cities is the differ-

ence between the actual data for the latter twentieth

century, and the model estimates for the twenty-first

century. That is, the model estimates are lower than the

actual number of EHE days. However, the expected

pattern of increased EHE days associated with higher

temperatures toward the middle and latter part of the

twenty-first century still holds for these locations.

The final, smallest, group of cities are those that show

an increase in EHE days for most of the century, and

then show a drop toward the latter part of the twenty-

first century. Denver, Colorado, and Phoenix, Arizona,

are examples of these cities, while Salt Lake City, Utah,

shows 0 days throughout the period. An explanation for

these anomalies would be pure conjecture, but model

uncertainty and variability certainly may play a role for

the counterintuitive results that we see in this small

subset of the study locations. However, for these cities,

even though there is a decrease in EHE days toward the

end of the twenty-first century, they still show a signifi-

cant increase over the period from the present-day

conditions.

Table 2 also shows the substantial impact that ag-

gressive GHG emissions controls could have on future

EHE days. These results show that in over half the cities

(i.e., 24) the A1 scenario results in at least 50% more

TABLE 2. Average number of summertime EHE days under baseline (1975–95) conditions and in future decades under alternative climate

change scenarios.

City

Avg No. of EHE

days 1975–95

Avg No. of EHE

days 2020–29 A1

Avg No. of EHE

days 2045–55 A1

Avg No. of EHE

days 2090–99 A1

Avg No. of EHE

days 2090–99 B1

Washington, DC 16 44 53 69 46

Boston, MA 11 43 51 71 51

St. Louis, MO 11 28 35 45 30

Dallas, TX 11 18 22 37 19

New York, NY 11 48 55 75 53

Memphis, TN 9 10 18 40 11

Denver, CO 9 85 88 77 76

Detroit, MI 9 13 15 36 12

Baltimore, MD 8 35 45 69 38

Minneapolis, MN 8 25 23 30 27

Newark, NJ 8 50 55 68 53

Louisville, KY 8 3 5 29 4

Greensboro, NC 8 50 59 70 50

Kansas City, MO 7 31 38 48 35

Phoenix, AZ 7 82 84 75 71

Jacksonville, FL 7 14 24 43 14

Providence, RI 7 32 38 63 41

Philadelphia, PA 6 46 54 73 51

Hartford, CT 6 25 31 58 33

Pittsburgh, PA 5 45 52 59 42

Atlanta, GA 5 51 48 58 37

Cleveland, OH 5 4 5 17 3

Birmingham, AL 5 17 24 56 17

Indianapolis, IN 5 19 22 32 18

Chicago, IL 5 14 18 33 17

Columbus, OH 5 3 4 16 5

San Antonio, TX 5 19 23 30 22

New Orleans, LA 5 1 8 54 1

Portland, OR 4 37 42 51 41

Cincinnati, OH 4 18 22 30 20

Tampa, FL 3 32 36 59 30

Buffalo, NY 3 1 3 15 1

Seattle, WA 2 51 54 57 47

San Francisco, CA 2 70 66 54 64

Houston, TX 1 4 5 13 3

Los Angeles, CA 1 45 60 88 57

San Diego, CA 1 32 39 61 36

Salt Lake City, UT 0 0 0 0 0

San Jose, CA 0 2 4 4 1

Miami, FL 0 2 14 55 2
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EHE days than with the B1 scenario. Alternatively, in

most cities the number of EHE days in the 2090s falls in

the range of the estimated number of days for the 2020s

and the period 2045–55 under the A1 scenario.

Table 3 presents the estimates of average summertime

EHE-attributable mortality in the future periods under

these climate change scenarios. Figure 1 presents these

results in terms of the equivalent EHE-attributable mor-

tality rates for the different periods with the A1 emissions

scenario.

The results in Table 3 are sorted in descending order

based on the average number of estimated summertime

EHE-attributable deaths in the period 2020–29 under

the A1 scenario. Cumulatively, these results show the

average number of summertime EHE-attributable deaths

would be expected to more than double from the value in

the 2020–29 period to the results in the 2090–99 period

under the A1 emissions scenario. These results represent

increases of nearly 1100 and 4200 EHE-attributable

deaths per year compared to the baseline estimates from

TABLE 3. Estimates of average summertime EHE-attributable deaths in future periods under alternative climate change scenarios, using

Algorithm 1.

City

EHE-attributable deaths

per summertime

using 1975–95 algorithm

for years 2020–29

Scenario: A1

EHE-attributable

deaths per summertime

using 1975–95 algorithm

for years 2045–55

Scenario: A1

EHE-attributable

deaths per summertime

using 1975–95 algorithm

for years 2090–99

Scenario: A1

EHE-attributable

deaths per summertime

using 1975–95 algorithm

for years 2090–99

Scenario: B1

Detroit, MI 255 291 701 234

New York, NY 221 251 344 245

Louisville, KY 178 327 548 234

Dallas, TX 175 224 371 194

Chicago, IL 143 185 300 165

Denver, CO 138 145 144 125

Atlanta, GA 124 114 123 92

Minneapolis, MN 119 112 142 131

Cleveland, OH 103 139 463 95

Boston, MA 85 111 132 102

Philadelphia, PA 83 97 133 94

Memphis, TN 81 150 335 88

Hartford, CT 78 99 174 98

Washington, DC 71 80 98 43

Newark, NJ 68 74 92 72

Baltimore, MD 67 87 137 73

St. Louis, MO 67 109 189 79

Kansas City, MO 64 80 99 73

Birmingham, AL 57 65 110 56

Greensboro, NC 47 57 68 58

Buffalo, NY 45 70 112 54

Jacksonville, FL 44 84 182 45

Pittsburgh, PA 41 45 45 37

Phoenix, AZ 40 48 100 69

Providence, RI 40 50 85 52

New Orleans, LA 38 40 92 31

Indianapolis, IN 37 41 65 33

Los Angeles, CA 26 38 59 35

San Antonio, TX 21 27 34 25

Cincinnati, OH 19 23 31 21

Columbus, OH 19 30 112 33

Seattle, WA 15 14 18 13

Houston, TX 14 19 28 14

Tampa, FL 13 11 14 12

San Jose, CA 11 13 15 13

Portland, OR 8 10 13 9

San Francisco, CA 7 6 9 6

San Diego, CA 3 4 8 4

Salt Lake City, UT 3 3 5 3

Miami, FL 0 0 0 0

Tot 2668 3373 5730 2860
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the period 1975–95. The growth in the city-specific results

over time under the A1 scenario in Table 3 is a reflection

of both the anticipated increase in the number of EHE

days and the initial sensitivity of the city to those days.

More EHE days will, by definition, result in more EHE-

attributable mortality in a location. The sensitivity of the

location to these days also strongly influences the absolute

size of the increase. As with Table 2, there are a few cities

that do not show the expected steady increase over time.

Seattle, Washington, and Tampa Bay, Florida, are ex-

amples that show a small drop and then revert back to the

expected pattern of an increase with time. In addition to

climate model error, one explanation for this pattern is

that the reduction of leveling of EHE days for some cities

for certain time periods will also result in a small decrease

for in heat-related mortality in some instances. However,

it noteworthy that in a broad evaluation of this type there

is an intuitive mortality response in the preponderance of

cities.

The contrast in results in Table 3 between the A1 and

B1 scenarios for an average year in the 2090s is also

notable. Under the B1 scenario there would be roughly

half as many anticipated EHE-attributable deaths as in

the A1 scenario. This represents a potential benefit of

roughly 2800 fewer lives lost in an average summer as

a result of the greater emissions controls in the B1 sce-

nario relative to the A1 scenario.

Figure 1 provides the A1 scenario results from Table 3

in terms of their equivalent EHE-attributable mortality

rates per 100 000 city residents. The 2020 results in this

figure provide a rough indication of current EHE vul-

nerability while the series shows how this vulnerability is

expected to change over time. The general pattern of

these results is consistent with results of previous studies

that show the strongest regional EHE-attributable mor-

tality response in northeastern and midwestern cities

(e.g., Anderson and Bell 2009; Medina-Ramon and

Schwartz 2007; Sheridan et al. 2009). This pattern is also

consistent with results from with past studies (e.g.,

Chestnut et al. 1998; Greene and Kalkstein 1996; Sheridan

et al. 2009) that concluded the risk of EHE-related mor-

tality increases with increasing inter- and intraseasonal

climate variability. Previous studies found the area from

Minneapolis, Minnesota, and Kansas City, Missouri,

eastward experiences the greatest intraseasonal synop-

tic climatological variability (Greene and Kalkstein

1996), and virtually all the highest EHE-attributable

mortality rates are found in this area.

FIG. 1. EHE-attributable mortality rates under the A1 scenario in future periods.
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A currently unanswered question is whether the po-

tential benefits of the recent growth in interest in EHE

notification and response programs can be estimated

when considering the meteorological impacts of climate

change? The impact of these intervention activities was

estimated by developing a second EHE-attributable

mortality algorithm for each city. The first algorithm, as

previously described, was developed using data for the

period 1975–95. This represents a ‘‘baseline’’ period

before the presumed increase in EHE awareness and

intervention following the severe EHEs in the summer

of 1995. The second algorithm uses daily mortality and

weather data for the years 1975–2004, which includes

the period during 1996–2004 when general public aware-

ness of the health risks of EHEs increased and more

rigorous EHE notification and response programs were

implemented in a number of cities following the 1995

EHE in Chicago. Rather than using the much shorter

time period of 1995–2004, when intervention activities

were instituted, we decided to utilize the entire time

frame to increase sample size and allow for a full pre-

and postintervention comparison. Because this period

is dominated by the years before we assume there was a

substantial increase in efforts to develop and implement

EHE programs, indications of these programs reducing

EHE-attributable mortality in this longer period likely

present a conservative estimate of the programs’ true

benefits. Results using the algorithm from this longer

period can be compared with estimates using the algo-

rithm from the shorter period to calculate changes in

EHE-attributable mortality that may be attributable to

the increase in public awareness of EHE risks and a

greater interest in EHE programs over this longer pe-

riod. To estimate these benefits, new EHE-attributable

mortality algorithms were developed along with esti-

mates of EHE-attributable mortality under each of

previously described time periods and climate change

scenarios using the previously described methods.

Table 4 provides a summary of the resulting EHE-

attributable mortality estimates using this longer data

series. Similarly, Table 5 presents the estimated number

of lives saved as a result of the presumed increase in

public awareness of EHEs and interest in EHE notifi-

cation and response programs. These results are calcu-

lated by subtracting the EHE-attributable mortality

results by city, period, and scenario in Table 4 from the

equivalent results in Table 3.

Combined, Tables 4 and 5 show that using the algo-

rithms developed with data from the period where we

assume there was considerable growth in EHE aware-

ness and EHE notification and response programs re-

sults in lower EHE-attributable mortality across all

scenarios and periods when the results across cities are

aggregated. These estimates of avoided EHE-attributable

deaths range from over 600 in the study cities in the

average year in the 2020s under the A1 scenario to over

1100 in the average year in the 2090s in the same scenario.

The 2090’s results for the B1 scenario are large and simi-

lar to those observed for the 2020s in the A1 scenario with

an estimate of over 600 avoided deaths.

However, the results in Table 5 also highlight some of

the potential complications with this simple approach as

several of cities (i.e., 8) produce estimates that suggest

there was no benefit from increased awareness or de-

velopment of heat programs as evidenced by negative

values. No clear characteristic can be readily identified

to link these cities. For example, they are not clustered

geographically as the group includes Boston, Massa-

chusetts; Tampa, Florida; and Portland, Oregon. One

possibility is that there were important differences in the

nature of the EHE days in the periods in these locations

compared to other study cities. While a small number of

random anomalous results should be expected in an

evaluation of this kind a more comprehensive explana-

tion is currently lacking and remains an area for po-

tential future investigation.

4. Summary and conclusions

While this analysis provides an insight into the po-

tential impacts of a changing climate on heat-related

mortality, there are nevertheless some caveats that need

to be considered when evaluating the results.

As mentioned previously, this study does not consider

any potential changes in the demographic patterns of the

cities. Considerable research has shown that the elderly

represent a more vulnerable population in terms of

negative health impacts of heat (O’Neill et al. 2008;

Gronlund et al. 2008; O’Neill and Ebi 2009). As the

anticipated demographic trend in the United States is

toward an older population, our mortality estimates may

understate the future impact of heat on acute mortality.

Our results also assume that current threshold condi-

tions for EHE days and the future health response to these

days will remain unchanged. Thus, we have not changed

the attributes of the airmass types; the same meteorologi-

cal criteria lead to the same airmass types throughout this

analysis. While society’s future response to specific weather

conditions may vary from what is currently observed, the

nature of this response is difficult to predict. At the same

time, holding this response constant over time helps high-

light the risks associated with projections of future climates

under different scenarios as well as the potential benefits

of climate change mitigation efforts.

These are both strong assumptions. In particular, the

assumption about the consistent response to warming
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conditions provides the possibility, all else remaining

equal, for a potentially significant underestimation of the

impact of health intervention strategies on future EHE-

attributable mortality as future conditions increasingly

resemble the extremes under the current climate.

Overall, our results show extreme heat events repre-

senting a source of increased health risk and impacts

for many cities across the United States. The AOGCM-

estimated changes show an overall increase in summer

temperature with often significant increases in the num-

ber of future EHE days in most of our study cities. Thus,

this represents a significant potential increase in the risk

that heat will pose to human health in the twenty-first

century, as substantial increases in heat-related mor-

tality are projected in the future. In addition, the results

suggest that already vulnerable cities in the Northeast

and Midwest will bear the brunt of large mortality in-

creases if the weather warms as the models indicate.

It appears that an intervention and mitigation strategy

with respect to greenhouse gas emissions could have

a noticeable impact on future EHE-attributable mor-

tality, as the estimated deaths associated with the lower

TABLE 4. Estimates of average summertime EHE-attributable deaths in future periods under alternative climate change scenarios.

City

EHE-attributable

deaths per summertime

using 1975–2004 algorithm

for years 2020–29

Scenario: A1

EHE-attributable

deaths per summertime

using 1975–2004 algorithm

for years 2045–55

Scenario: A1

EHE-attributable

deaths per summertime

using 1975–2004 algorithm

for years 2090–99

Scenario: A1

EHE-attributable

deaths per summertime

using 1975–2004 algorithm

for years 2090–99

Scenario: B1

Detroit, MI 160 185 454 148

New York, NY 159 182 249 178

Louisville, KY 138 257 376 171

Dallas, TX 91 115 190 99

Chicago, IL 110 142 250 127

Denver, CO 91 94 83 81

Atlanta, GA 25 24 29 18

Minneapolis, MN 99 93 121 107

Cleveland, OH 99 133 486 91

Boston, MA 129 154 213 152

Philadelphia, PA 49 57 78 55

Memphis, TN 70 130 293 77

Hartford, CT 32 40 76 43

Washington, DC 47 57 73 25

Newark, NJ 63 69 86 67

Baltimore, MD 64 83 127 70

St. Louis, MO 47 82 137 58

Kansas City, MO 71 89 112 81

Birmingham, AL 23 32 75 23

Greensboro, NC 36 47 52 48

Buffalo, NY 20 51 92 25

Jacksonville, FL 64 111 199 64

Pittsburgh, PA 29 33 38 27

Phoenix, AZ 36 44 91 63

Providence, RI 44 53 87 57

New Orleans, LA 28 29 68 24

Indianapolis, IN 45 51 73 41

Los Angeles, CA 22 29 47 30

San Antonio, TX 21 27 35 26

Cincinnati, OH 17 21 28 19

Columbus, OH 29 42 155 47

Seattle, WA 8 9 12 7

Houston, TX 12 16 27 10

Tampa, FL 22 25 41 21

San Jose, CA 11 13 15 13

Portland, OR 15 17 21 17

San Francisco, CA 6 5 8 5

San Diego, CA 3 4 7 4

Salt Lake City, UT 3 3 4 3

Miami, FL 0 0 0 0

Tot 2038 2648 4608 2222

290 W E A T H E R , C L I M A T E , A N D S O C I E T Y VOLUME 3



emissions scenario are less than half of those projected

to occur under higher emissions scenarios by the 2090s.

However, the proportionality of these differences is less

likely to exist in earlier periods as the impact of emis-

sions control increases over time in these scenarios.

Similarly, the comparison of results using the two

different mortality algorithms suggests that advances in

EHE notification and response that have occurred dur-

ing the period 1996–2004 have had a significant impact in

reducing EHE-related mortality. Projecting these benefits

into the future highlights the importance of these ad-

vances in a warming climate. The magnitude of the re-

sulting estimates shows the potential health benefits that

could be realized by continuing to improve these efforts.
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TABLE 5. Estimates of potential average summertime EHE-attributable deaths avoided as a result of increased public awareness of EHE

risks and adoption of EHE notification and response programs during the period 1996–2004.

City

Estimate of avg

summertime

EHE-attributable

deaths avoided in the

2020–29 period

Scenario: A1

Estimate of avg

summertime

EHE-attributable

deaths avoided in the

2045–55 period

Scenario: A1

Estimate of avg

summertime EHE-

attributable deaths

avoided in the

2090–99 period

Scenario: A1

Estimate of avg

summertime

EHE-attributable

deaths avoided in the

2090–99 period

Scenario: B1

Detroit, MI 95 106 247 86

New York, NY 62 69 95 67

Louisville, KY 40 70 172 63

Dallas, TX 84 109 181 95

Chicago, IL 33 43 50 38

Denver, CO 47 51 61 44

Atlanta, GA 99 90 94 74

Minneapolis, MN 20 19 21 24

Cleveland, OH 4 6 223 4

Boston, MA 244 243 281 250

Philadelphia, PA 34 40 55 39

Memphis, TN 11 20 42 11

Hartford, CT 46 59 98 55

Washington, DC 24 23 25 18

Newark, NJ 5 5 6 5

Baltimore, MD 3 4 10 3

St. Louis, MO 20 27 52 21

Kansas City, MO 27 29 213 28

Birmingham, AL 34 33 35 33

Greensboro, NC 11 10 16 10

Buffalo, NY 25 19 20 29

Jacksonville, FL 220 227 217 219

Pittsburgh, PA 12 12 7 10

Phoenix, AZ 4 4 9 6

Providence, RI 24 23 22 25

New Orleans, LA 10 11 24 7

Indianapolis, IN 28 210 28 28

Los Angeles, CA 4 9 12 5

San Antonio, TX 0 0 21 21

Cincinnati, OH 2 2 3 2

Columbus, OH 210 212 243 214

Seattle, WA 7 5 6 6

Houston, TX 2 3 1 4

Tampa, FL 29 214 227 29

San Jose, CA 0 0 0 0

Portland, OR 27 27 28 28

San Francisco, CA 1 1 1 1

San Diego, CA 0 0 1 0

Salt Lake City, UT 0 0 1 0

Miami, FL 0 0 0 0

Tot 630 725 1122 638
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